The Assistant Professor in Mechanical Engineering Syllabus Kerala PSC 2025 covers essential topics such as thermodynamics, fluid mechanics, heat transfer, and mechanical vibrations, providing a comprehensive foundation for the exam. Assistant professor in government engineering college exam published in 2022. The syllabus comprises of two parts as given below Mode of Exam: MCQ (OMR) Exam contains 100 Questions Each correct answer carry one mark & 0.33 detected for wrong answers Total time allotted :Ā 1hr 15 min Do you believe that all questions comes from the syllabus Ā ? NO, Thorough knowledge of subject is requiredĀ since question from outside can be expected. In the recent years we can see a trend of deviation in questions in the technical exams conducted by the Kerala PSC. Will only studying topics in syllabus fetch me a GOVT Job? Do not blindly follow the syllabus rather haveĀ good technical knowledge of your subjects. If you check the previous year papers you could find out many questions coming outside the syllabus in all technical exams by Kerala PSC. Assistant Professor in MECHANICAL ENGINEERING SYLLABUS *Non Technical portions has been omitted from the syllabus Ā MATHEMATICS Ā Ā (ENGINEERING) Matrices:Ā Ā Ā Rank,Ā systemsĀ of linear Ā equations,Ā consistency, Ā eigenĀ values,Ā eigen vectors, Cayley Hamilton Theorem, diagonalisation, linear dependence and independence of vectors. Demo Class : Click Here Partial Differentiation:Ā Partial derivatives, Eulerās theorem on homogeneous functions, total derivatives, Jacobians, Taylorās series (one and two variables) ā Maxima and minima of functions of two variables ā Lagrangeā s method. Vector Differentiation:Ā Scalar and vector functions, differentiation of vector functionsĀ āĀ velocity Ā andĀ acceleration Ā āĀ scalarĀ and Ā vectorĀ fields Ā āĀ operator Ā ĆĀ Ā Ā Ā Ā ā Gradient ā Directional derivative ā Divergence ā Curl ā irrotational and solenoidal fields ā scalar potential. LaplaceĀ Transforms: Transforms of elementary functions, shifting property ā inverse transforms ā transforms of derivatives and integrals ā transform of functions multiplied Ā by Ā t Ā and Ā divided Ā by Ā tĀ ā Ā convolution Ā theorem, Ā solution Ā of Ā ordinary differential equations with constant coefficients using Laplace transforms. Ordinary Differential Ā Equations: Ā First Order ordinary differential equations, systems of linear first order ordinary differential equations, linear ordinary differential equations of higher order with constant coefficients, linear second order ordinary differential equations with variable coefficients (Cauchy and Legendre equations), Method of Laplace transforms for solving ordinary differential equations. Complex Analysis: Analytic functions, conformal mappings, bilinear transformations, complex integration, Cauchyās integral theorem and formula, Taylor and Laurentās series, residue theorem. Fourier Series: Fourier series of periodic functions of period 2 Ļ and 2 ā, odd and even functions, Half range expansions. BASIC Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā CIVIL Ā ENGINEEERING Mechanics Ā āĀ statistics Ā ā Ā Coplanar Ā forces Ā āĀ conditions Ā ofĀ equilibrium. Ā Support reactions ā Simply supported and overhanging beams. Friction ā Laws of friction ā applications. Centre of gravity and moment of inertia of plane areas. Dynamics ā rectilinear motion ā Newtonās laws of motion ā curvilinear motion. Building materials ā common building materials ā stone, brick, cement, steel, aggregate, concrete, timber ā properties, IS specification. Building construction ā types and functions of the following structural components of buildings ā foundations and superstructure. Surveying ā principle of surveying ā linear measurements using chain ā levelling work ā reduction of levels. Demo Class : Click Here Ā Ā Ā Ā Ā BASIC MECHANICAL ENGINEERING Zeroth, first and second laws of thermodynamics, CI and SI Engines, properties of steam. Centrifugal and reciprocating pumps, hydraulic turbines, refrigeration and air conditioning, hydro-electric, thermal and nuclear power plants, mechanical power transmission systems such as belt, rope, chain and gear, manufacturing process ā casting, Ā forging,Ā rolling, Ā brazing, Ā soldering, Ā and Ā welding,Ā machining Ā process Ā ā turning, shaping, drilling, grinding and milling. Conic sections and miscellaneous curves, orthographic, isometric and perspective projections. Demo Class : Click Here Ā Ā Ā Ā Ā Ā Ā BASICĀ Ā ELECTRICAL Ā Ā Ā Ā Ā Ā Ā ENGINEERING Ohmās Ā law, Ā KirchoffāsĀ laws Ā āĀ solution Ā of Ā seriesĀ and Ā parallel Ā circuits Ā with Ā dc excitation. Magnetic circuits: MMF, field strength, flux density, reluctance, electromagnetic induction, Faradayās laws, Lenzās law, statically and dynamically induced emfs, self and mutual induction, co-efficient of coupling. Principle Ā of Ā generation Ā of Ā alternating Ā currentĀ ā Ā waveforms Ā ā Ā frequency, Ā period, average and rms values, form factor. Generation of 3 phase ac voltage, star and delta connections, voltage & current relationships in star and delta (balanced system only). Principle of operation of dc motor & generator, single phase transformer and three phase induction motor. Types of lamps, necessity of earthing. BASIC Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā ELECTRONICS Ā ENGINEERING Devices ā working principle of PN junction, Zener diode and BJT. Systems ā Rectifiers : Half wave, Full wave and Bridge. Filters: Capacitors and Inductors. Amplifiers & Oscillators ā Common Emitter RC coupled amplifier and its frequency response. Principles of Wein-bridge oscillator. Op-amps: Basics, inverting and non- inverting amplifier. Communication ā Need for modulation, principles of AM and FM. Measurements ā Working principles of CRO and Multimeter. Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā BASIC Ā Ā Ā Ā COMPUTER Ā Ā Ā Ā SCIENCE Functional units of a computer. Programming in C ā control structures, functions. Thermodynamics Ā Ā Ā and Ā Fluid Ā Mechanics Thermodynamic processes, entropy, irreversibility and availability, basic thermodynamic Ā cycles, Ā behaviour Ā ofĀ ideal Ā andĀ real Ā gases,Ā properties Ā ofĀ pure substances, computation of work and heat, ideal processes, analysis of thermodynamic cycles related to energy conversion. Fluid mechanics: Fluid properties, fluid statics, manometry, buoyancy, control volume analysis of mass, momentum and energy, fluid acceleration, differential equations of continuity and momentum. Eulerās equation, Bernoulliās equation, laminar flow through pipes, boundary layer displacement, momentum and energy thickness, flow through pipes, minor and major losses, dimensional analysis. Heat transfer: Modes of heat transfer, one dimensional heat conduction, thermal resistance, fins, free and forced convective heat transfer, dimensionless parameters, problems in convective heat transfer with the help of correlation, thermal boundary layer, radiation, black and grey surfaces, shape factors, network analysis. Mechanics of Solids: Stress-strain relationship and elastic constant, principal stress and strains, Mohrās circle for plane stresses and plane strains, shear force and bending moment diagrams, bending of beams, torsion of circular shafts, Eulerās theory of columns, strain energy, thermal stresses. Theory Ā of Ā Machines Kinematic and dynamic analysis of planer mechanisms. Cams, Gears and gear trains. Flywheels, Governors, Balancing of rigid rotors and field balancing, Balancing of single and multi cylinderĀ engines, free and forced vibrations